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Abstract:

Classical experimental designs have been used as configurations
of choice at GlaxoSmithKline within Chemical Development in
establishing robust products and processes while achieving other
goals such as reduction of cost, waste, process investigation times
and most importantly improved quality. Occasionally, as in this
paper, these first intent designs have been proved to be unworkable
through irregularly shaped experimental regions induced through
chemistry constraints. To achieve optimum efficiency, a fit for
purpose computer-aided D-Optimal Design in considering the
reduction of cyclic imides to amines has been investigated here,
proving to be an invaluable additional tool in applying the
appropriate design at the relevant time. In addition, partial least
squares (PLS) analyses has been explored with a view of simul-
taneously modelling the responses whilst primarily identifying
those factors having the largest impact across the responses of
interest (quantity of reducing agent and solvent, temperature, and
time). This combined with process analytical technology (PAT)
through online IR monitoring has facilitated part of this cyclic
process of investigations using scientific and business judgment.

1. Introduction
At GlaxoSmithKline within Chemical Development, experi-

mental design methodology has been an integral and established
tool in obtaining robust products and processes as well as
helping to improve quality and to reduce costs, waste, and
timelines of process investigations. It has been used to great
effect in answering questions such as (i) is my process lean?
and (ii) is my process on the brink of chaos - i.e. how reliable
is it to operate? In other words it has been used to identify
critical factors, optimise factor settings, minimise waste, and
identify robust operating regions for our processes. Classical
screening and response surface designs such as factorial,
fractional factorial, and central composite designs have on the
whole been used to facilitate the described process. These
standard designs have assured degrees of precision, orthogonal-
ity, and other optimal properties that are important in the context
for which they are used.1 Over the past few years, the
availability of well designed, easy to use experimental design

software such as Design Expert (DX-7) have empowered the
scientist to be more proactive in setting up and analysing these
designs, thereby having less reliance on statisticians to do this.
On some occasions these standard designs have proved to be
inappropriate and impractical. One such limiting case seen more
often within Chemical Development is the impossibility of
running certain combinations of the factor settings or when the
experimental region is constrained or irregularly shaped. To
achieve optimum efficiency, fit for purpose computer-aided
designs such as alphabetical optimal designs1 have proved to
be an invaluable additional tool in applying the appropriate
design at the relevant time using scientific judgment and
common sense. In this paper we consider one such example
where a D-Optimal Design has been systematically built up to
investigate the reduction of imides to amines. Partial least
squares projection to latent structure (PLS),2 has been used to
model the relationship between the input factors and the
correlated responses. This method generalizes and combines
features from principal components analysis as well as multiple
regressions and has been shown to compare favorably with other
estimation techniques such as ordinary least squares, variable
subset selection, ridge regression, and principal components
regression.3,4

2. Chemical Example and Statistical Approach
Reduction of cyclic imides to amines is a well-

described process that routinely employs a selection of
three reagents, Lithium aluminum hydride (LiAlH4),
sodium bis(2-methoxyethoxy)aluminium hydride (Red-Al,
and borane (BH3) complexes.5-12 All of them have some
issues in terms of scalability of the process. Both LiAlH4

and Red-Al are considered not ideal for their reactivity
towards other functional groups of the molecule (Scheme
1) as well as intrinsic difficulties in handling these reagents

* To whom the correspondence should be addressed. E-mail: sergio.k.bacchi@
gsk.com; mohammad.2.yahyah@gsk.com.

† Chemical Development, Synthetic Chemistry, GlaxoSmithKline Medicine
Research Centre.

‡ Statistical Science, GlaxoSmithKline.
§ Chemical Development, Synthetic Chemistry, GlaxoSmithKline.

(1) Myers, R. H.; Montgomery, D. C. Response Surface Methodology
Process and Product Optimisation Using Designed Experiments, 2nd
ed.; Wiley: New York, 1998.

(2) Eriksson, L.; Hermens, J. L. M.; Johansson, E.; Verhaar, H. J. M.;
Wold, S. Aquat. Sci. 1995, 57, 217–241.

(3) Porter, M. A. Statistician 1993, 42, 217–227.
(4) Rockhold, F. W. Statistic. Med. 2000, 19, 3211–3217.
(5) For a general review on methods of generating diborane in situ from

sodium borohydride see: Souza, M V. N.; Vasconcelos, T. R. A. Appl.
Organomet. Chem. 2006, 20, 798.

(6) Polonski, T.; Milewska, M. J. Tetrahedron Lett. 1991, 32, 3255–3258.
(7) Rao, V. D.; Periasamy, M. Synthesis 2000, 5, 703–706.
(8) Herbert, C. B. U.S. Patent 3,634,277, 19720111, 1972.
(9) Volkov, V.; Myakishev, K. G.; Gorbacheva, I. Inst. Neorg. Khim.

NoVosibirsk 1983, 6, 1442.
(10) Toft, M. A.; Leach, J. B.; Himpsl, F. L.; Shore, S. G. J. Inorg. Chem.

1982, 21, 1952–1957.
(11) Myakishev, K. G.; Gorbacheva, I.; Volkov, V. Inst. Neorg. Khim.

NoVosibirsk 1984, 29 (4), 912–916.
(12) Burkhardt, E.; Corella, J. A. U.S. Patent 6,048,985, 2000.

Organic Process Research & Development 2010, 14, 332–338

332 • Vol. 14, No. 2, 2010 / Organic Process Research & Development 10.1021/op900286r  2010 American Chemical Society
Published on Web 02/10/2010



in bulk quantities. The use of borane complexes as an
alternative provides a good reaction profile but has
drawbacks in terms of safety issues.13 In fact diborane
gas, which can easily be evolved from the commercially
available solution of borane in ether, has a very low auto-
ignition temperature of ∼38-52 °C and a wide explosive
range in air (0.8-90% vol).

A process for the in situ preparation of borane was
considered a valid alternative. A review of the literature5

suggested that there were numerous examples describing the
use of sodium borohydride (NaBH4) and a Lewis acid for
the in situ generation of borane, BH3, but very little relating to
the direct reduction of an imide. Even if, in such a case, the
use of iodine as Lewis acid was recommended, due to the
additional restriction in selected functional groups interconver-
sion, we had to direct our attention to borontrifluoride (BF3).

2.1. Objectives. The main aims of this study were to:

(1) Identify critical factors (Table 1) impacting a number
of response variables: residual starting material (res.
SM) 1, pyrrolidinone-like intermediate 2, product 3
(Scheme 1), and impurities formation, whilst requiring
tight control on scale-up. Two constraints were
imposed on the region leading to an irregular design
and hence to the impossibility of applying a simple
factorial design:

(i) the mole ratio between NaBH4 and BF3 ·THF to
be greater than 3/4; this constraint imposed
through literature survey6–8

(ii) the total volumes of THF, relative to the unit
amount of starting material, to be at least twice
the moles of NaBH4 - on grounds of experimental
evidence in making the stirring effective.

(2) Investigate the possibility of reducing the amount of
NaBH4 used in order to facilitate the work-up of the
reaction.

(3) Achieve high conversions with an acceptable impurity
profile.

(4) Investigate the reduction in the time needed for the
reaction to reach complete conversion (presently
around 22 h).

Introducing experimental design at the same time as other
techniques such as automated equipment at GlaxoSmithKline,
has had a beneficial impact on the up-take of experimental
design methodology. The use of both automated equipment and
experimental design has allowed a coherent block of experi-
ments to be planned in advance and then implemented. The
SK233 autosampler platform is capable of carrying out 10
reactions simultaneously in the investigation (Figure 1). It allows
automated reaction preparation, has good process control (range
of temperature, concurrent reactions in different temperature
zones: condensing, stirring, and nitrogen blanketing), and
permits online HPLC monitoring.9

2.2. Sequential Design Approach. An initial set of four
scoping experiments were run to test the reaction and analysis
methods prior to committing time and materials to the eventual
experimental design campaign as well as getting a feel for the
appropriateness of the factor range settings (Table 1). Typically
the four experiments that constitute a scoping study include two
control reactions run close to the midpoints of each factor range,
providing an estimate of the background variability in the system
with two extreme sets of reaction conditions representing the
mildest (L,L,L) and most forcing (H,H,H) reaction conditions
(Figure 2). Note, the mildest conditions for a factor are not
necessarily the lowest settings of a factor, e.g. dilution of a
reaction mixture.

The ordering of the scoping study was considered important,
with control experiments run at the start and end of the study
to emphasise any time-related bias. The data from the study is
given in Table 2 with associated output from the measured
responses. To prevent a transgression of the constraints imposed
on the design region, small reductions for BF3 ·THF were

(13) Urben, P. G. Bretherick’s Handbook of ReactiVe Chemical Hazards,
6th ed.; Butterworth Heinemann: Woburn, MA, 1999; p 1937.

Scheme 1. Chemical transformations

Table 1. Factors and selected factor ranges

factor min max current target

NaBH4 (moles per mole of
starting material)

1.5 6 4

BF3 ·THF (moles per mole of
starting material)

2 8 5.7

total THF (volumes vs amount of
starting material)

5 15 10.5

temp (°C) 20 35 25
time (h) 6 24 24 Figure 1. Anachem SK233 platform.

Figure 2. Scoping study runs.
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necessary for the control runs. This change was not deemed
significant for the purpose of the scoping study. Figure 3 shows
clear differences in responses of the extreme conditions relative
to the control experiments for residual starting material 1,
pyrrolidinone intermediate 2, product 3, and impurities. We
believed that the extreme conditions could meet the desired
specifications so that the current factor ranges were appropriate
for the purpose of the investigation. However, there was some
evidence of curvature in the responses, suggesting that this may
need to be modelled in later studies. However, at this stage,
focus was directed towards main effects and certain targeted
two-factor interactions.

3. Results and Discussion
3.1. D-Optimal Experimental Design. Given resource

limitations, the scoping experiments were then used to form
part of the next experimental design campaign. This was
generated using the D-Optimal Design option in DX-7 by
specifying up front all the main effects and suspected two factor
interactions that the subsequent design would be capable of
estimating.

A 20-reactions D-Optimal Design was generated in three
reaction sets (Table 2 for runs 1-4, plus Table 3 for runs 5-10
and runs 11-20) with the first set corresponding to the scoping
reactions. A further consideration was made to incorporate

another control experiment in the design to investigate any time-
related biases as well as assessing the reproducibility of the
process (run 11). However, one of the control experiments (run
1, Table 2) was discarded from future investigations on the basis
of its irregularity with the other two repeats. An evaluation of
the efficiency of the resulting design was assessed against other
competing D-Optimal Designs for the same resource using a
number of measures including the variance inflation factors
(VIF) and condition number.14 In particular, the minimum VIF
was 1.67 for the interaction between temperature and time and
a maximum of 13.91 for the interaction between BF3 ·THF and
the total volumes of THF (vol total THF).

3.2. Analysis and Interpretation. For the analysis of data,
multivariate analysis was used to gain insight into the effects
of the factors to the multiple responses considered. Principal
component analysis (PCA) in many ways forms the basis for
multivariate data analysis. PCA’s main function is to reduce
dimensions of the multivariate, multichannelled data to a few
manageable dimensions, practically 2, 3, or 4, hence, referred
to as a 2-, 3-, or 4-principle component (PCA) model. The first
principal component explains the maximum amount of variation
in the original data. The second principal component describes
the maximum amount of remaining variation and is perpen-
dicular to the first. Successive principal components describe
decreasing amounts of variation and ultimately noise. The
reduced data serves as an approximation to the original data
and allows a chemist to use a scatter plot to overview the data
in the reduced dimensions to study different observations and
variables for their contribution and relationship to the overall
variability of the data. Most of the information of the reduced
data is contained in the loadings and scores plots of those
components. Loadings are weights given to the original
variables and are useful for locating the important variables/
effects. Scores are linear combinations of the original variables
whose weights are given by loadings. Scores are used in the
place of the original data to look at the relationship between
the observations and can be interpreted as projected data in the
rotated coordinates. The coordinates of the rotation are deter-
mined to maximize the capability of capturing the information
in the data.15,16

Partial least squares projection to latent structures (PLS)2,17

is a proven multivariate calibration method in quantitative
analysis. Similarly to PCA, its main idea is to make latent
variables of the original matrix X (main effects and selected
two-factor interactions in this case) and matrix Y (dependent
variables). Latent variables are formed as a linear combination
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1984, 5, 735–743.

Table 2. Scoping design

run
NaBH4

(equiv)
BF3 ·THF

(equiv)
total vol THF

(equiv)
temp.
(°C)

time
(h)

product 3
(%a/a)

intermed. 2
(%a/a)

impurities
(%a/a) res. SM 1 (%a/a)

1 4.00 3.67 10.5 27.5 15 84.9 4.6 10.5 0.0
2 1.50 2.00 5.0 20.0 6 39.6 56.4 2.0 2.0
3 6.00 8.00 15.0 35.0 24 78.4 11.6 10.0 0.0
4 4.00 3.67 10.5 27.5 15 75.9 13.8 9.8 0.4

Figure 3. Summary of results from scoping study.
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of all the original variables in X in such a way that most of the
association with Y variables can be explained. The weights of
the linear combination are called loadings, and the resultant
linear combinations are called scores. The next main function
of PLS is dimensional reduction. As in the case of PCA where
dimensional reduction is achieved by explaining most of the
variation in the X matrix, PLS can achieve dimensional
reduction when the first few linear combinations of the X matrix
can explain most of the variation in the Y matrix. The resulting
model is often referred to as a 2-, 3-, or 4-component PLS
model.

A 2-component PLS model was fitted to the data (one
component through cross validation and one by forced fitting
to allow meaningful interpretation form the scores and loadings
plots) in which approximately 28% of the variation in the input
data was used in modelling approximately 64% of the response
variation. The PLS score plot in Figure 4 (left) is invaluable in
identifying patterns in the design configuration, whereas Figure
4 (right) provides an overview of the correlations between all

variable effects for the first two components. The loadings plot
shows the relationship between the main effects, two factor
interactions and the four responses simultaneously. This plot
can also provide an indication of how the input variables
influence the response variables for the components shown.
Patterns seen in this loadings plot may be brought back to the
score plot to see which observations are closest to fulfilling the
objectives of the study. Amongst the responses, both pyrroli-
dinone intermediate and the residual starting material are
correlated with each other as they are situated close together in
the loadings plot (Figure 4, right).

This would suggest that this pair of responses has similar
profiles different from those observed with impurities and
product which are both well dispersed. NaBH4, BF3 ·THF and
temperature are positively correlated with product whereas
negatively with the intermediate and the residual starting
material, respectively. This would suggest that as NaBH4,
BF3 ·THF, and temperature increase, the product is anticipated
to increase, whereas the pyrrolidinone intermediate and the

Table 3. Full experimental design, excluding the scoping design

run
NaBH4

(equiv)
BF3 ·THF

(equiv)
total vol THF

(equiv)
temp.
(°C)

time
(h)

product 3
(%a/a)

intermed. 2
(%a/a)

impurities
(%a/a)

res. SM 1
(%a/a)

5 4.25 2.00 8.5 35.0 6 64.5 24.7 9.7 1.1
6 6.00 8.00 12.0 20.0 6 69.2 18.3 11.8 0.7
7 3.75 5.00 15.0 35.0 24 83.0 4.9 11.4 0.7
8 6.00 2.00 15.0 20.0 24 65.5 23.5 10.0 1.0
9 1.50 2.00 5.0 35.0 24 48.0 41.6 9.6 0.8
10 4.25 5.67 8.5 20.0 24 77.1 7.2 15.0 0.7
11 4.00 3.67 10.5 27.5 15 75.4 12.4 11.9 0.3
12 6.00 8.00 15.0 35.0 6 81.7 5.9 11.8 0.6
13 1.50 2.00 15.0 35.0 6 48.5 41.0 9.6 0.9
14 6.00 2.00 12.0 20.0 6 59.1 33.0 6.8 1.0
15 6.00 2.00 15.0 35.0 6 63.5 26.6 9.4 0.5
16 6.00 8.00 15.0 20.0 24 76.7 8.2 14.6 0.5
17 3.75 5.00 15.0 20.0 6 59.7 28.9 11.1 0.4
18 2.50 3.33 5.0 35.0 6 70.5 24.1 5.1 0.4
19 6.00 2.00 12.0 35.0 24 64.5 17.8 17.3 0.3
20 1.50 2.00 15.0 20.0 24 45.6 42.5 11.3 0.6

Figure 4. PLS score plot of runs 1-20 of Tables 2 and 3 (left) and loading plot of variable effects for components 1 and 2
(right).
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residual starting material are not: a required and desirable
outcome from the objectives of the study.

The total volume of the THF is positively linked with
impurities, suggesting that levels of impurities can be potentially
reduced by reducing the amount of solvent used. Given that
this factor has little impact on any other responses, it provides
a clear indication forward for its control. A condensed review
of the model interpretation is available through the variable
influence on projection parameter plot (Figure 5, left). This
provides a compressed summary of the overall influence of each
input variable across all dimensions and response variables.
Variables with VIP larger than ∼1 are considered to be the
most influential for the model. BF3 ·THF, NaBH4, the total
volume of THF, time, and the interaction between NaBH4 and
the total volume of THF contribute most strongly to the
modelling of the five responses.

To eliminate some of the insignificant terms in the model,
all effects with a VIP <1 were removed from the model with
the exception of temperature which was retained for chemically
practical reasons. Note, the VIP is a squared function of the
PLS weights and will lead to only positive numerical values.
The resulting 2-component PLS model utilized 52% of the input
data for modelling approximately 60% of the response variation.
By doing so, the earlier findings discussed in the previous
paragraph were confirmed. Size and sign of PLS regression
coefficients for scaled and centered data pooled over the two
components for each response are given in Figure 5 (right).
This plot indicates small or large, negative or positive influences
of the input variables on the resulting responses and further
aids model interpretation. A similar profile of coefficients is
encountered for the pyrrolidinone intermediate and the residual
starting material. As mentioned earlier, a close resemblance of
these plots indicates that the intermediate and the residual
starting material are strongly correlated with each other. This
also substantiates the fact that these responses are situated close

to each other in the loadings plot of Figure 4. The score and
loadings plots in conjunction with each other can be used to
unveil observations likely to meet the objectives of the study.
On first sight, the cluster of observations 3, 7, 12, and 16 (Table
3) would seem to be in a good position to meet the general
demands for all the responses as they are located in the same
quadrant and position in the scores plot as product, diagonally
opposite to both the intermediate and the residual starting
material and well distanced from impurities. This would suggest
higher levels of conversion, lower levels of intermediates and
residual starting material as well as acceptable levels of
impurities. The remaining two conditions of reducing the time
needed for the reaction to reach completion and reducing the
amount of NaBH4 used for the synthesis of the product to
facilitate the work-up of the reaction cannot be achieved
simultaneously. Although run 12 has a reaction time of only
6 h, it has 6 equiv of NaBH4 whereas run 7 has a lower level
of 3.75 equiv of NaBH4 but the reaction time is for sure longer
than 6 h.

4. Process Analytical Technologies (PAT) for Online Monitor-
ing

Although Scheme 1 illustrates a conversion of functional
groups that might look very simple, the use of NaBH4 in
combination with BF3 was leading to a number of “unclear”
transient intermediates, generically referred as boron-derivatives.
Standard HPLC analysis in combination with LC/MS techniques
allowed following the reduction of the starting cyclic imides 1
to the pyrrolidine derivative 3 via the lactame 2, but did not
close the gap around the understanding of the transient species.
This was remedied by using online process analytical techno-
logy18,19 to gain a continuous view of the reaction profile
avoiding the need to take off-line samples. A 20-L vessel was
equipped with a mid-infrared probe ReactIR 4000 from Mettler-
Toledo,20,21 and infrared spectra were acquired at 25 °C every

Figure 5. VIP for overall influence (left) and PLS reg. coefficients pooled over components 1 and 2 (right).
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2 min for the first 7 h and every 10 min for the additional 22 h.
Experimentally, the starting material was stirred with NaBH4

in THF for the first 3.5 h; then it was treated with the BF3 in
THF complex over 1.5 h, and finally was left running for a
further 24 h. This experimental procedure is similar to what
was done in the SK233; the amounts of reagents and THF used
were the ones indicated in the “current target” column of the
Table 1. The spectra variations were interpreted with the
ConcIRT software.

This software helps the quick deconvolution of the different
components in the reaction mixture, even if it is important to
bear in mind that it works through mathematical models and
the results obtained from ConcIRT should be critically evaluated
using chemical knowledge. Figure 6 shows the three-dimen-
sional plot identifying the species indicated in Scheme 1.

The use of multivariate data together with a chemometric-
based analysis and careful examination of the peak positioning
in the IR spectra18 allowed the identification of six different
species during the reaction progression. Figure 7 shows the
profiling of these six components during the first six hours of
reaction.

The component colored orange was identified as the starting
cyclic imide 1 via bands at 1771 and 1737 cm-1. The light-
blue component was identified as the final pyrrolidine 3 with
diagnostic bands at 1000-1200 cm-1. The yellow component
was identified via bands at 1069 and 910 cm-1 as THF. The
red component had a spectrum that resembled that of the final
product 3 with an additional intense band at 1330 cm-1

attributable to an N-boranyl derivative 4 (Figure 8).
The blue component was identified as an intermediate

formed soon after the addition of NaBH4. As the carbonyl
stretches at 1771 and 1737 cm-1 decreased, two bands at 1695
and 1664 cm-1 increased. These two peaks, together with bands
at 1050 and 1332 cm-1 could be in agreement with a
hydroxypyrrolidinone 5 derivative (Figure 9).

The green component appeared and then disappeared during
the reaction. This transient intermediate showed intensity bands
at 1175 and 1000 cm-1 due to C-O stretch (single bond) from

(18) Guidance for Industry: PAT - A Framework for Innovative Pharma-
ceutical Development, Manufacturing and Quality Assurance; Phar-
maceutical CGMPs (Current Good Manufacturing Practice). U.S.
Department of Health and Human Services, Food and Drug Admini-
stration: Washington, DC, September, 2004.

(19) Hinz, D. C. Process Anal. Technol. 2004, 1, 16–18.
(20) Marziano, I.; Sharp, D. C. A.; Dunn, P. J.; Hailey, P. A. Org. Process

Res. DeV. 2000, 4, 357–361.
(21) Socrates, G. Infrared and Raman Characteristic Group Frequencies:

Tables and Charts, 3rd, ed.; John Wiley & Sons: New York, 2001.

Figure 6. ReactIR three-dimensional plot.

Figure 7. IR monitoring of reaction progression.
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reduction of the carbonyl, indicating a possible C-O-B bond.
An additional band in the region between 1590-1690 cm-1

could be ascribable to an imine, suggesting this component to
be an azacycloborinate derivative 6 (Figure 10). After an acidic
work-up, this component should lead to the previously seen
lactam derivative 2.

5. Conclusion
In contrast to classical designs which are based on elegant

arrangements of balance and precision, D-Optimal design
techniques provide a pragmatic and fit for purpose approach
on reaching a goal, this goal being to minimise the generalized
variance of the estimates based on a prespecified model. They
have and will always remain a useful option to use in cases
where classical designs do not apply and the model must be
designed for special terms. PLS has been an effective method
of analysis in gaining an invaluable insight into the objectives

of the study. Whilst it has an advantage of having the ability of
simultaneously modelling a number of correlated responses, the
very nature of projection methods provides a latent variable
model which is not always an ideal way of considering
processes, especially if there are only a few response types.
For that reason, it may not be considered the best tool for a
more careful modelling that one may want to do. There is the
notion that this method has become well used because of the
widespread availability of the software, and a lack of familiarity
in the scientific community of other multivariate software. A
potential downside of the PLS approach could arise in situations
where a factor is only effecting a single response in which case
the overall analysis may mask this effect and this could be key
if it is an impurity that is being reduced. In addition, PAT
techniques were invaluable in providing an in-depth study of
the mechanism and the process understanding of such a simple
reaction, helping to allow better appreciation of the reaction
profile.
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Figure 8. N-Boranyl derivative 4.

Figure 9. Hydroxypyrrolidinone 5.

Figure 10. Azacycloborinate derivative 6.
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